Materi Persamaan Garis Singgung Lingkaran SMP Kelas 8

Persamaan Garis Singgung Lingkaran - Di dalam kehidupan sehari-hari tentu kalian sering menjumpai benda-benda yang bentuknya berupa lingkaran dan lingkaran tersebut tepat bersinggungan dengan benda yang lain contohnya adalah katrol dengan tali timba ataupun roda kereta api yang bersinggungan dengan rel. Di dalam postingan kali ini Rumus Matematika Dasar akan mengajak kalian untuk mempelajari garis singgung lingkaran. Garis Singgung Lingkaran merupakan garis-garis yang memotong sebuah lingkaran pada suatu titik tertentu. Garis singgung lingkaran haruslah tegak lurus terhadap jari-jari lingkaran yang melalui titik singgung.coba perhatikan gambar di bawah ini:

Materi Persamaan Garis Singgung Lingkaran SMP Kelas 8

Mengenal Sifat Garis Singgung Lingkaran

Dari gambar di atas dapatkah kalian menentukan mana yang disebut sebagai garis singgung lingkaran? coba kalian amati garis g yang memotong lingkaran pada titik A dan B, lalu perhatikan garis h yang "memotong" lingkaran pada titik C. Garis h tersebutlah yang disebut sebagai garis singgung pada lingkaran yang pusatnya ada di titik O dengan jari-jari r. Titik C yang dilalui garis h disebut sebagai titik singgung.

Perhatikan kembali garis g. Titik potong garis g pada lingkaran ada di titik A dan B yang berpusat di O membentuk segitiga sama kaki sehingga ∠ OAB = ∠ OBA.

Apabila garis g dengan pusat A diputar mendekati titik A sepanjang busur AB yang kecil, maka akan  diperoleh bahwa setiap perpindahan titik B, yaitu B' akan selalu berlaku ∠OAB' = ∠OB'A dan sudut AOB' makin kecil. Pada saat titik B' sampai di titik A, garis g hanya menyinggung lingkaran di titik A dan sudut yang terbentuk antara OA dan garis g adalah 900 atau OA tegak lurus dengan garis g. Pada saat itu garis gmenjadi garis singgung pada lingkaran di titik A.

Dari uraian di atas, dapat disimpulkan bahwa:

a. Garis singgung lingkaran adalah suatu garis yang memotong lingkaran hanya pada satu titik.

b. Garis singgung lingkaran tegak lurus dengan jari-jari yang ditarik melalui titik singgungnya.

c. Melalui satu titik pada lingkaran, dapat dibuat tepat satu garis singgung.

Source: Salamah. U. 2012. Berlogika Dengan Matematika 2. Solo : Platinum

Itulah pembahasan awal mengenai Persamaan Garis Singgung Lingkaran. Untuk materi selanjutnya akan dibahas tentang Cara Melukis Garis Singgung Lingkaran. Sampai berjumpa lagi di materi pelajaran matematika selanjutnya.

Cara Menghitung Panjang Garis Singgung Lingkaran

Cara Menghitung Panjang Garis Singgung Lingkaran – Sebelumnya kita sama-sama mempelajari tentang cara melukis garis singgung pada lingkaran, Rumus Matematika Dasar juga sudah menjelaskan materi Persamaan Garis Singgung pada Lingkaran. Khusus untuk materi pada kesempatan ini yang akan dibahas adalah tentang cara menghitung panjang garis singgung pada suatu lingkaran. Agar lebih mudah dan cepat dalam memahaminya, kita langsung saja mempelajarinya dalam contoh soal serta cara menyelesaikannya berikut ini:

Contoh Soal dan Penyelesaiaan Panjang Garis Singgung Lingkaran


Contoh Soal 1:
Hitunglah panjang garis singgung dari suatu titik di luar lingkaran jika jarak titik tersebut ke pusat lingkaran adalah 10 cm dan jari-jari lingkaran 6 cm!!

Cara Menghitung Panjang Garis Singgung Lingkaran

Penyelesaian:
Diketahui OT = 10 cm, r = 6 cm, dan garis singgung lingkaran adalah TA. Karena TAO siku-siku di A maka dengan menggunakan dalil phytagoras diperoleh:

TA2= OT2 – OA2
TA2= 102 –62
TA2= 100 – 36
TA2= 64
TA = √64 = 8

Jadi, panjang garis singgung lingkaran tersebut adalah 8cm.


Contoh Soal 2:
Perhatikan gambar di bawah ini. Diketahui jari-jari OR = OQ = 5 cm dan jarak PO = 13 cm. hitunglah panjang tali busur QR!

Cara Menghitung Panjang Garis Singgung Lingkaran
Penyelesaian:
Perhatikan ΔPRO

PR2= OP2 – OR2
PR2= 132 – 52
PR2= 169 – 25
PR2= 144
PR = √144 = 12

Luas daerah ΔPRO = 1/2 x alas x tinggi
Luas daerah ΔPRO = ½ x 5 x 12
Luas daerah ΔPRO = 30 cm2
Luas daerah layang-layang PQOR = 2 x 30 cm2 = 60 cm2
Luas daerah layang-layang PQOR = 1/2 x diagonal x diagonal
60  = 1/2 x OP x QR
60 = 1/2 x 13 x QR
QR = 120/13 = 9,2

Jadi, panjang tali busur QR adalah 9,2 cm

Source: Salamah. U. 2012. Berlogika Dengan Matematika 2. Solo : Platinum

itulah penjelasan contoh soal mengenai Cara Menghitung Panjang Garis Singgung Lingkaran serta langkah-langkah untuk menyelesaikannya semoga bisa membantu kalian unuk lebih memahami materi tentang persamaan garis singgung lingkaran.

Penyajian Data Menggunakan Tabel

Penyajian Data Menggunakan Tabel- Di dalam materi mengenai statistika data tidaklah cukup dikumpulkan saja akan tetapi harus disajikan ke dalam bentuk yang lebih menarik dan mudah untk dipahami oleh orang yang akan menggunakan data tersebut. Penyajian data dapat dilakukan dengan menggunakan berbagai media, salah satunya adalah dengan menggunakan tabel. Oleh karenanya pada pembahasan kali ini Rumus Matematika Dasar akan mengajak kalian ntuk bersama-sama mempelajari cara atau langkah-langkah penyajian data dengan menggunakan tabel.

Tabel Frekuensi Data Tunggal

Penyajian data tunggal dengan menggunakan tabel biasa disebut dengan istilah distribsi frekuensi data tunggal. Agar kalian lebih mudah memahaminya, coba perhatikan contoh di bawah ini:

Pada sensus penduduk yang diadakan di sebuah desa, diperoleh data jumlah anak yang dimiliki oleh masing-masing keluarga sebagai berikut:

1  4  3  4  5  4  3  6   1  2
2  3  2  4  1  6  5  3  4  3
4  4  5  4  4  4  6  5  4  4
2  4  3  3  2  4  2  3  4  1

Data tersebut masih bersifat acak dan belum tersusun dengan rapi dan teratur sehingga akan sulit untuk mengetahui informasi yang ada di dalam data tersebut. Oleh sebab itu, untuk mempermudah kita dalam membaca informasi yang ada di dalam data itu kita harus menyajikannya ke dalam bentuk tabel frekuensi data tunggal.


Di dalam tabel frekuensi data tunggal masing-masing baris dan kolom hanya memuat satu nilai atau data. Biasanya tabel dibagi menjadi 3 kolom. Kolom yang pertama disisi dengan data. Kolom yang kedua berupa turus (mencacah data dengan menggunakan lambang | untuk setiap data yang bersesuaian dengan data yang diperoleh). Sedangkan kolom terakhir atau yang ketiga merupakan frekuensi yang berisi jumlah turus yang terdapat pada data tertentu. Berikut adalah tabel yang diperoleh berdasarkan pada data di atas:

Penyajian Data Menggunakan Tabel

Tabel Frekuensi Data yang Dikelompokkan

Selanjutnya kita akan mempelajari bagaimana membuat tabel dengan sisitem data berkelompok. Penyajuian data berkelomppok ke dalam bentuk tabel disebut dengan distribusi frekuensi data berkelompok. Langsung saja kita perhatikan bersama contoh yang ada di bawah ini:

Hasil nilai ulangan pelajaran matematika siswa kelas 7 SMP Tunas Mekar adalah sebagai berikut:

44  54  85  92  73  99  91  96  74
75  70  57  83  49  57  52  64  73
82  90  70  89  91  67  52  64  73
82  59  65  79  82  89  53  52  50

Dari data di atas kita bisa melihat bahwa nilai yang paling tinggi dan paling rendah memiliki selisih/jarak yang disebut dengan range(jangkauan). Jangkauannya cukup besar yaitu 99 – 44 = 55. Apabila data tersebut kita sajikan ke dalam bentuk tabel data tunggal tentunya tabel yang dihasilkan tidak praktis dan tetap sulit untuk dipahami. Sehingga kita perlu mengelompokkan data-datanya terlebih dahuu baru dimasukkan ke dalam tabel frekuensi data berkelompok.

Di dalam tabel frekuensi data berkelompok, tiap-tiap baris dan kolom memuat beberapa data/nilai. Berikut adalah istilah yang sering digunakan ketika menyajikan data pada tabel berkelompok:

Kelas Interval:
Pengelompokan dari beberapa data atau nilai.

Banyak Kelas Interval:
Banyaknya jumlah pengelompokan dari keseluruhan data yang ada.

Panjang Interval:
Banyaknya data di dalam satu kelas interval. Panjang interval di dalam suatu tabel haruslah sama.

Dengan menggunakan istilah-istilah tersebut, maka data diatas dapat kita sajikan ke dalam bentuk tabel menjadi seperti berikut ini:

Penyajian Data Menggunakan Tabel

Tabel diatas memiliki banyak kelas interval = 7 dan panjang kelas interval = 8

Demikianlah penjelasan mengenai tata cara Penyajian Data Menggunakan Tabeluntuk materi selanjutnya akan dijelaskan mengenai cara menyajikan data menggunakan media yang lan seperti gambar dan diagram. So, simak terus materi yang diberikan oleh blog ini jangan sampai ketinggalan. Sampai jumpa!!!!

Rumus Mencari Luas Selimut pada Tabung

Rumus Mencari Luas Selimut pada TabungUntuk pembahasan sisi bangun ruang pada materi kali ini Rumus Matematika Dasar hanya akan focus kepada sisi bangun ruang yang berfungsi sebagai sekat antara bagian luar dan bagian dalam dari bangun ruang tersebut. Bangun ruang pertama yang akan kita pelajari bersama adalah tabung. Coba kalian perhatikan gambar yang ada di bawah ini:
Rumus Mencari Luas Selimut pada Tabung

Gambar di atas menunjukkan sebuah tabung yang awalnya terbentuk dari sebuah segi empat ABCD yang diputar sejauh 360terhadap sumbu AD (satu putaran penuh). Dari gambar tersebut juga kita bisa mengetahui unsur-unsur apa saja yang ada di dalam sebuah tabung.


Unsur-unsur Tabung

Berikut adalah unsur-unsur yang membentuk sebuah bangun ruang tabung:
  • Tabung terdiri dari tiga buah sisi, yaitu sisi alas, sisi atas, serta sisi tegak yang berupa bidang lengkung. Sisi alas dan sisi atas berupa lingkaran yang masing-masing berpusat padai titik A dan D. sisi tegak ini juga sering disebut sebagai selimut tabung.
  • Jarak antara alas dan tutup tabung merupakan tinggi tabung yang biasa dinotasikan dengan simbol t.
  • Jari-jari alas dan tutup tabung adalah jarak antara A dan B, sedangkan diameternya adalah jarak antara B dan B’ maka BB' = 2AB. Jari-jari tabung biasa dilambangkan dengan r, sedangkan diameternya dinotasikan dengan simbol d.

Cara Mencari Luas Sisi Tabung

Luas selimut btabung dapat kita tentukan dengan menggunakan cara di bawah ini:

Luas Selimut Tabung = keliling alas x tinggi tabung
Luas Selimut Tabung = 2πr x tinggi tabung
Luas Selimut Tabung = 2πr x t

Setelah kita mengetahui luas selimut tabung, kita juga dapat menentukan luas dari sisi tabung dengan rumus berikut:

Luas Sisi Tabung = luas lingkaran alas + selimut tabung + luas lingkaran tutup
Luas Sisi Tabung = πr2 + 2πrt + πr2
Luas Sisi Tabung = 2πr2 + 2πrt
Luas Sisi Tabung = 2πr (r + t)

Contoh Soal dan Penyelesaian Mengenai Luas Sisi tabung

Sebua tabung memiliki tinggi 13 cm dan jari-jari alasnya adalah 7 cm. Tentukanlah luas sisi tabung!

Penyelesaian:
Tinggi tabung = 13 cm
Jari-jari = 7 cm
Luas Sisi Tabung = 2πr (r + t)
Luas Sisi Tabung = 2 x 22/7 x 7 x (7 + 13)
Luas Sisi Tabung = 44 x 20 = 880
Maka, luas sisi tabung tersebut adalah 880 cm2.

Source: Salamah. U. 2012. Berlogika Dengan Matematika 3. Solo : Platinum

Demikianlah pembahasan materi untuk postingan kali ini tentang Luas Selimut Tabung pada artikel selanjutnya akan dibahas mengenai Luas Sisi Kerucut. Sampai jumpa!!

Kuadrat dan Akar Kuadrat Suatu Bilangan

Kuadrat dan Akar Kuadrat Suatu Bilangan – kalian tentunya sudah mengetahui bahwa kuadrat dari suatu bilangan merupakan perkalian yang berulang dari bilangan tersebut sebanyak dua kali. Apabila X merupakan suatu bilangan, maka kuadrat dari X adalah X2. Contoh di bawah ini merupakan beberapa bentuk kuadrat:

a. 32 = 3 x 3 = 9
b. (1,2)2 = 1,2 x 1,2 = 1, 44
c. (-5)2 = (-5) x (-5) = 25

Lalu , apakah sebenarnya yang disebut dengan akar kuadrat? Akar kuadrat dari suatu bilangan merupakan suatu bilangan tidak negative yang apabila dikuadratkan sama dengan bilangan tersebut. Bisa dikatakan bahwa akar kuadrat dari sebuah bilangan merupakan kebalikan dari kuadrat suatu bilangan. Apabila Y adalah kuadrat dari bilangan X (Y = X2) maka bilangan X adalah akar kuadrat dari bilangan Y (X = √Y). contoh di bawah ini adalah beberapa bentuk akar kuadrat:

a. √16 = 4
b. √9 = 3
c. -√49 = -7
d. √(-5)2= 5

Itulah penjelasan singkat mengenai Kuadrat dan Akar Kuadrat Suatu Bilangan yang dapat dijelaskan oleh Rumus Matematika Dasar pada kesempatan kali ini. Semoga kalian dapat memahami dengan baik perbedaan antara kuadrat dan akar kuadrat sehingga bisa menjawab soal-soal yang berkaitan dengan materi ini dengan lebih baik dan tidak melakukan kesalahan ketika megerjakannya. Semoga bermanfaat!!!

Contoh Soal Matematika Mengenai Relasi dan Cara Penyelesaiannya

Contoh Soal Matematika Mengenai Relasi dan Cara Penyelesaiannya - Sebelumnya Rumus Matematika Dasar sudah memberikan penjelasan materi tentang Pengertian Relasi Matematika , masih ingatkah kalian apa yang dimaksud dengan Relasi? Secara sederhana relasi dapat didefinisikan sebagai suatu pernyataan yang menghubungkan dua buah himpunan. Jadi relasi dari himpunan A ke himpunan B adalah sebuah aturan yang menghubungkan anggota-anggota himpunan A dengan anggota-anggota himpunan B. Pada kesempatan ini, kita akan mempelajari bersama beberapa contoh soal mengenai Relasi yang dapat kalian simak di bawah ini:

Contoh Soal Matematika Mengenai Relasi dan Penyelesaiannya


Contoh Soal 1:

Pada kegiatan Posyandu yang diadakan dalam dua bulan sekali ada sekumpulan anak balita yaitu Suci, Hasty, Gilang, Fikri, dan Rizky. Selain itu, ada juga ibu-ibu yang terdiri atas Tami, Nengsih, Kinanti, dan Rani. Diketahui bahwa Suci adalah anak dari Tami, Hasty dan Gilang anak dari Nengsih, Fikri dan RIzky anak dari Kinanti.

a. Sebutkan nama relasi yang mungkin dari himpunan anak dan himpunan Ibu.
b. Dari relasi tersebut, adakah ibu yang tidak membawa anak balitanya?
c. Dari relasi tersebut, adakah balita yang tidak bersama ibunya?

Penyelesaian:

a. Relasinya adlah “Anak dari”
b. Ibu yang tidak membawa anak balitanya adalah Rani.
c. Tidak ada balita yang tidak bersama ibunya.

Contoh Soal 2:

Diketahui himpunan A = {1, 2, 3, 4} dan himpunan B = {1, 2, 3, 4, 5, 6, 7}. Jika dari himpunan A ke himpunan B dihubungkan dengan relasi “setengah dari” maka tentukanlah anggota himpunan A yang mempunyai kawan pada himpunan B!

Penyelesaian:

Anggota himpunan A yang “setengah dari” anggota himpunan B adalah 1, 2 dan 3 karena 1 setengah dari 2, 2 setengah dari 4, dan 3 setengah dari 6.

Demikianlah sedikit penjelasan materi serta Contoh Soal Matematika Mengenai Relasi dan Cara Penyelesaiannya. Moga-moga dapat membantu kalian untuk lebih memahami materi tentang Relasi yang diajarkan di sekolah. Dan semoga dengan mempelajari materi ini kalian bisa lebih mudah dalam menyelesaikan soal-soal yang berkaitan dengan materi seputar relasi. Selamat belajar!!!

Operasi Penjumlahan dan Pengurangan pada Bentuk Aljabar

Rumus Matematika Dasar – Di dalam aljabar kita juga akan menjumpai beragam jenis operasi perhitungan, diantaranya adalah pengurangan dan penjumlahan. Penjumlahan bentuk aljabar diperoleh dengan cara menggabungkan suku-suku yang sejenis. Sementara untuk pengurangan bentuk aljabar kita bisa memperolehnya dengan cara mengurangkan suku-suku yang sejenis lalu kemudian hasilnya dijumlahkan dengan suku-suku yang tidak sejenis.

Bentuk-bentuk aljabar dapat dijumlahkan ataupun dikurangkan dengan menggunakan sifat komutatif dan distributif dengan melihat suku-suku yang sejenis dan koefisien dari masing-masing suku.

Sifat komutatif:
a x b = b x a

Sifat distributif:
a x (b + c) = (a x b) + (a x c)
a x (b – c) = (a x b) – (a x c)

Mengubah bentuk aljabar dari suku-suku (penjumlahan atau pengurangan) ke dalam bentuk faktor-faktor perkalian disebut dengan memfaktorkan dan sebaliknya mengubah faktor perkalian menjadi suku-suku disebut sebagai menjabarkan. Kesamaan yang dihasilkan disebut sebagai identitas, yaitu pernyataan yang selalu benar untuk setiap nilai variabel yang diberikan.

Contoh Soal dan Penyelesaian Operasi Penjumlahan dan Pengurangan Bentuk Aljabar



Contoh Soal 1:
Sederhanakanlah bentuk-bentuk aljabar berikut ini!

a. 4x + 2y – x + 7y
b. 2x2 + 3xy + 4x – 2xy + 2y2

Penyelesaian:
a. 4x + 2y – x + 7y = 4x – x + 2y + 7y
                                = (4 – 1)x + (2 + 7)y
                                = 3x + 9y

b. 2x2 + 3xy + 4x – 2xy + 2y2 = 2x2 + 4x + (3 – 2)xy + 2y2
                                                 = 2x2 + 4x + xy + 2y2



Contoh Soal 2:
Tentukan hasil penjumlahan 5(x2+ 2x) dan x2 – 2x

Penyelesaian:
5(x2 + 2x) dan x2– 2x = 5x2 + 10x + x2 – 2x
                                      = (5 + 1) x2 + (10 – 2)x
                                      = 6x2+ 8x

Contoh Soal 3:
Tentukan hasil pengurangan dari x2+ 3x + 1 dengan x2 + 16

Penyelesaian:
(x2 + 3x + 1) - (x2+ 16) = x2 + 3x + 1 - x2 + 16
                                        = (1 – 1)x2 + 3x + (1 – 16)
                                        = 3x – 15

Contoh Soal 4:
Jabarkan bentuk Aljabar berikut ini!

a. 3(x + 5)
b. 2x(x – 2)

Penyelesaian:
a. 3(x + 5) = 3x + 15
b. 2x(x – 2) = 2x2 – 4x



Apakah kalian sudah paham dengan penjelasan mengenai Operasi Penjumlahan dan Pengurangan pada Bentuk Aljabar yang sudah diberikan di atas? Coba amati dengan seksama contoh-contoh soal yang diberikan dan pelajari dengan baik langkah-langkah di dalam menyelesaikan soal tersebut. Semoga bisa membantu kalian untuk lebih memahami cara menjawab soal-soal mengenai penjumlahan serta pengurangan pada bentuk aljabar. 

Operasi Perkalian pada Bentuk Aljabar

Pada artikel Rumus Matematika Dasar sebelumnya kita telah mempelajari bersama mengenai operasi penjumlahan dan pengurangan pada bentuk aljabar. Maka kali ini kita beranjak pada bentuk operasi perhitungan yang lain yaitu tentang perkalian pada bentuk aljabar. Pada kelas VII kalian pasti sudah mempelajari mengenai perkalian bentuk aljabar. Masihkah kalian mengingatnya? Pada pembahasan kali ini, akan dijelaskan perkalian suatu bilangan dengan bentuk aljabar suku dua.
Perkalian pada aljabar dapat diselesaikan dengan menggunakan sifat distributif perkalian terhadap penjumlahan.

Perkalian Suatu Bilangan dengan Bentuk Aljabar Suku Dua

Apabila bx + c adalah bentuk umum suku dua dengan b ≠ 0, perkalian bilangan adengan bx + c akan menjadi seperti berikut ini:

a(bx + c) = abx + ac

Agar lebih mudah dalam memahaminya, sekarang kita langsung mempelajari cara menyelesaikan contoh soal mengenai perkalian aljabar berikut ini:

Contoh Soal 1:
Jabarkanlah bentuk-bentuk aljabar berikut ini:
a. 2(x + 1)
b. 3(-4p – 5)
c. -4(-2x – 1) – 3(x – 2)

Penyelesaian:
a. 2(x + 1) = 2x + 2
b. 3(-4p – 5) = -12p - 15
c. -4(-2x – 1) – 3(x – 2) = 8x + 4 – 3x + 6
                                         = (8 – 3)x + 4 + 6
                                         = 5x + 10

Kita bisa memeriksa persamaan di atas benar atau salah dengan cara mengganti variabel x pada ruas kiri ataupun kanan dengan menggunakan sembarang nilai. Jika hasil perhitungan ruas kiri dan kanan sa,a, maka kesamaan tersebut bisa dikatakan benar. Contohnya:

2(x + 1) = 2x + 2 kita gunakan x = 0
2 (0 +1) = 2(0) + 2
2 (1) = 2

Ternyata hasil di ruas kiri dan kanan sama-sama 2, artinya kesamaan tersebut benar.


Contoh Soal 2:
Sebuah persegi panjang, panjang sisi-sisinya 5 cm dan (2p +2) cm. tentukanlah luas dari persegi panjang tersebut!

Penyelesaian:
Jika luas persegi panjang disebut L,
L = 5 x (2p + 2) = (5 x 2p) + (5 x 2) = 10p + 10
Maka, luas dari persegi panjang tersebut adalah (10p + 10) cm2


Itulah penjelasan yang amat sederhana tentang perkalian pada bentuk aljabar. Untuk materi selanjutnya akan dibahas tentang Perkalian Suku Dua pada Bentuk Aljabar.

Contoh Soal Cerita Matematika Tentang Kesebangunan

Contoh Soal Cerita Matematika Tentang Kesebangunan – Pada artikel sebelumnya Rumus Matematika Dasar telah memberikan penjelasan kepada kalian mengenai materi yang berkaitan dengan kesebangunan pada bangun datar. Pada artikel yang lain juga telah dibahas tentang bagaimana cara menyelesaikan soal-soal yang berhubungan dengan materi tersebut. Tapi perlu kalian ketahui juga bahwasannya soal-soal matematika tentang kesebangunan biasanya juga muncul di dalam bentuk soal cerita. Berikut ini adalah beberapa contoh soal cerita yang bisa kalian coba kerjakan untuk melatih pemahaman materi mengenai kesebangunan bangun datar. Selamat berlatih dan selamat mengerjakan!!

Latihan Soal Cerita Matematika tentang Kesebangunan


Soal 1
Panjang bayangan tiang bendera adalah 12 m. Pada saat yang sama, panjang bayangan Rendra adalah 2m. Apabila tinggi Rendra adalah 150 cm. Maka berapakah tinggi dari tiang bendera tersebut?

Soal 2
Seorang gadis berdiri dengan jarak 2,9 m dari sebuah gedung setinggi 3,5 m. Gadis itu menatap puncak gedung itu dengan pandangan sejauh 2,1 m. Berapakah tinggi dari gadis tersebut?

Soal 3
Sebuah model pesawat panjangnya 40 cm dan lebarnya 32 cm. jika panjang pesawat yang sebenarnya adalah 30 m, berapakah lebar dari pesawat tersebut?

Soal 4
Panjang bayangan tugu karena terkena sinar matahari adalaj 15 m. pada tempat dan saat yang sama, sebuah tongkat yang panjangnya 1,5 m berdiri tegak dan menghasilkan bayangan sepanjang 3 m. tentukanlah tinggi dari tugu tersebut.

Soal 5
Contoh Soal Cerita Matematika Tentang Kesebangunan













Seorang pemuda mencoba menghitung lebar sungai dengan menancapkan sebuah tongkat pada titik B, C, D, dan E seperti terlihat pada gambar diatas sehingga posisi D, C, dan A segaris. Jika A adalah benda yaang berada di seberang sungai, coba tentukanlah lebar dari sungai tersebut.


Soal 6

Contoh Soal Cerita Matematika Tentang Kesebangunan

Sebuah tangga bersandar pada sebuah bangunan dan menyentuh sebuah balok. Jarak bangunan dan kaki tangga adalah 1,5 m. Lebar balok 90 cm, dan tinggi balok 150 cm. berapakah tinggi dari bangunan tersebut?

Soal 7
Panjang bayangan sebuah bangunan dan tiang listrik pada waktu yang bersamaa masing-masing 10 m dan 5 m. jika tinggi tiang listrik adalah 6 m, hitunglah tinggi dari bangunan tersebut!

Soal 8
Sebuah tongkat setinggi 1,5 m berdiri tegak dan mempunyai bayangan sepanjang 3 m. Pada waktu yang bersamaan, sebuah pohon mempunyai bayangan sepanjang 8 m.

a. buatlah sketsa yang menerangkan keadaan tersebut.
b. hitunglah tinggi dari pohon tersebut.



Itulah beberapa Contoh Soal Cerita Matematika Tentang Kesebangunan yang bisa kalian gunakan untuk berlatih dirumah. Soal tersebut juga bisa digunakan oleh anda para guru untuk diberikan sebagai latihan kompetensi terhadap murid-murid untuk mengukur seberapa jauh pemahaman mereka mengenai materi kesebangunan pada bangun datar. Akhir kata semoga bermanfaat dan selamat belajar.

Source: Salamah. U. 2012. Berlogika Dengan Matematika 3. Solo : Platinum

Soal UTS Bahasa Sunda Kelas 1 Semester 2 / Genap ~ KTSP


Pada kesempatan kali ini akan kami bagikan contoh Soal UTS / Ulangan Tengah Semester 2 (Genap) Kelas 1 SD Mapel Bahasa Sunda ( KTSP )

Silakan klik link di bawah ini untuk mendownload soal :
Soal UTS Bahasa Sunda Kelas 1 SD Semester 2 (Genap)  - KTSP 


Soal terkait :

Soal UTS KTSP Kelas 1 Semester 2 Lengkap Semua Pelajaran


Demikianlah contoh Soal UTS / Ulangan Tengah Semester 2 Kelas 1 SD Mapel Bahasa Sunda (KTSP). Semoga Bermanfaat.

Soal UTS PAI Kelas 1 Semester 2 / Genap ~ KTSP

Pada kesempatan kali ini akan kami bagikan contoh Soal UTS / Ulangan Tengah Semester 2 (Genap) Kelas 1 SD Mapel PAI / Pendidikan Agama Islam ( KTSP )

Silakan klik link di bawah ini untuk mendownload soal :
Soal UTS PAI Kelas 1 SD Semester 2 (Genap)  - KTSP 


Soal terkait :

Soal UTS KTSP Kelas 1 Semester 2 Lengkap Semua Pelajaran


Demikianlah contoh Soal UTS / Ulangan Tengah Semester 2 Kelas 1 SD Mapel PAI (KTSP). Semoga Bermanfaat.

Contoh Soal Kesebangunan dan Kekongruenan Bangun Datar dan Penyelesaiannya

Rumus Matematika Dasar sudah pernah memberikan ulasan materi mengenai Kesebangunan dan Kekongruenan Bangun Datar Matematika. Nah, untuk memperdalam pemahaman kalian mengenai materi tersebut, di sini kami akan memberikan beberapa contoh soal yang bias kalian gunakan untuk berlatih di rumah. Pada masing-masing soal akan diberikan penjelasan mengenai bagaimana cara menyelesaikannya. Namun untuk beberapa soal-soal yang lain kalian harus mengerjakannya sendiri atau bisa juga sambil didampingi oleh orangtua atau kakak kalian agar bisa bertanya apabila menjumpai kesulitan dalam memahami cara penyelelesaian soal yang diberikan. Yuk, mari langsung saja kita simak contoh persoalan yang pertama:

Contoh Soal Kesebangunan dan Kekongruenan Bangun Datar


Contoh Soal 1:

Perhatikan gambar dua buah belah ketupat di bawah ini, apakah kedua bangun tersebut dapat dinyatakan kongruen?

Contoh Soal Kesebangunan dan Kekongruenan Bangun Datar dan Penyelesaiannya

Penyelesaian:

Untuk menjawab soal tersebut, kalian harus mengingat kembali akan sifat-sifat bangun datar yang dimiliki oleh belah ketupat, yaitu:

a. Semua sisi sama panjang dan sepasang-sepasang sejajar.
b. sudut-sudut yang berhadapan sama besar dan terbagi dua sama besar.

Pada belah ketupat ABCD diatas, diketahui bahwa AB = BC = CD = AD = 6 cm,
Sudut A = sudut C = 400, dan sudut B = sudut D = 1400(sudut-sudut yang berhadapan)

Pada belah ketupat EFGH diatas, diketahui bahwa EF = FG = GH = EH = 6 cm,
Sudut E = sudut G = 400, dan sudut F = sudut H = 1400

Dari uraian tersebut dapat diperoleh:

AB/EF = BC/FG = CD/GF = AD=EH = 1

sudut A = sudut C = Sudut E = sudut G = 400
sudut B = sudut D = sudut F = sudut H = 1400

Karena sisi-sisinya yang bersesuaian memiliki ukuran sama panjang serta sudut-sudut yang bersesuaian sama besarnya, maka bangun ABCD dan EFGH bisa dikatakan kongruen.



Contoh Soal 2:

Perhatikan gambar layang-layang di bawah ini:

Contoh Soal Kesebangunan dan Kekongruenan Bangun Datar dan Penyelesaiannya
Apakah layang-layang ABCD dan EFGH sebangun?

Penyelesaian:

Layang-layang mempunyai sepasang sudut berhadapan yang sama besar. Sifat tersebut dapat kita gunakan untuk mencari sudut-sudut yang belum diketahui besarnya pada sebuah laying-layang.

Untuk layang-layang ABCD:
Sudut D = Sudut B = 1100  dan sudut A = 600
maka sudut C = 3600 – (110 + 110 + 80) 0 = 800

Untuk layang-layang EFGH:
Sudut H = Sudut F = 1100  dan sudut G = 800
maka sudut E = 3600 – (110 + 110 + 80) 0 = 600

Dengan demikian kita bisa menyimpulkan bahwa:
Sudut A = sudut E, sudut B = sudut F, sudut C = sudut G, dan sudut D = sudut H. dan ternyata sudut-sudut yang bersesuaian pada kedua laying-layang tersebut sama besar.

Untuk layang-layang ABCD, diketahui bahwa CD = BC = 6 cm dan AB = AD = 9 cm
Untuk layang-layang EFGH, diketahui bahwa GH = FG = 4 cm dan EH = EF = 6 cm

Sehingga dapat diperoleh:
BC/FG = DC/GH = 6/4 = 3/2
AD/EH = AB/EF = 9/6 = 3/2

Karena sudut-sudutnya sama besar dan perbandingan sisi-sisinya bersesuaian maka dapat kita simpulkan bahwa laying-layang ABCD bersifat sebangun dengan EFGH.



Jika kalian sudah paham dengan penjelasan soal di atas, sekarang saatnya kalian berlatih untuk mengerjakan soal-soal di bawah ini:


Soal Latihan 1:

Perhatikan gambar berikut:

Apakah trapesium ABCD dan trapesium EFGH sebangun? Jelaskan jawabanmu!


Soal Latihan 2:


a. Apakah persegi panjang KLMN sebangun dengan persegi panjang PQRS?
b. Apakah persegi panjang KLMN kongruen dengan persegi panjang PQRS?


Soal Latihan 3: 

Diantara bangun-bangun berikut, manakah yang sudah pasti sebangun?
a. dua persegi
b. dua segitiga samakaki
c. dua segitiga sama sisi
d. dua segitiga siku-siku
e. dua belah ketupat
f. dua segienam beraturan
g. dua lingkaran
h. dua layang-layang



Nah, itulah beberapa Contoh Soal Kesebangunan dan Kekongruenan Bangun Datar yang bisa kalian coba kerjakan untuk menguji kemampuan kalian mengenai materi tersebut. Teruslah berlatih dan tetap semangat belajar agar kalian mampu mengerjakan soal-soal mengenai kesebangunan dan kekongruenan bangun datar dengan bentuk-bentuk yang lain. Terimakasih telah menyimak materi ini sampai akhir, sampai jumpa lagi.

Soal UTS IPA Kelas 1 Semester 2 / Genap ~ KTSP


Pada kesempatan kali ini akan kami bagikan contoh Soal UTS / Ulangan Tengah Semester 2 (Genap) Kelas 1 SD Mapel Ilmu Pengetahuan IPA ( KTSP )

Silakan klik link di bawah ini untuk mendownload soal :
Soal UTS IPA Kelas 1 SD Semester 2 (Genap)  - KTSP 


Soal terkait :

Soal UTS KTSP Kelas 1 Semester 2 Lengkap Semua Pelajaran



Demikianlah contoh Soal UTS / Ulangan Tengah Semester 2 Kelas 1 SD Mapel Ilmu Pengetahuan Alam / IPA (KTSP). Semoga Bermanfaat.

Soal UTS IPS Kelas 1 Semester 2 / Genap ~ KTSP


Pada kesempatan kali ini akan kami bagikan contoh Soal UTS / Ulangan Tengah Semester 2 (Genap) Kelas 1 SD Mapel Ilmu Pengetahuan Sosial / IPS ( KTSP )

Silakan klik link di bawah ini untuk mendownload soal :
Soal UTS IPS Kelas 1 SD Semester 2 (Genap)  - KTSP 


Soal terkait :

Soal UTS KTSP Kelas 1 Semester 2 Lengkap Semua Pelajaran


Demikianlah contoh Soal UTS / Ulangan Tengah Semester 2 Kelas 1 SD Mapel Ilmu Pengetahuan Sosial / IPS (KTSP). Semoga Bermanfaat.

Soal UTS Matematika Kelas 1 Semester 2 / Genap ~ KTSP


Pada kesempatan kali ini akan kami bagikan contoh Soal UTS / Ulangan Tengah Semester 2 (Genap) Kelas 1 SD Mapel Matematika ( KTSP )


Silakan klik link di bawah ini untuk mendownload soal :
Soal UTS Matematika Kelas 1 SD Semester 2 (Genap)  - KTSP 

Soal terkait :

Soal UTS KTSP Kelas 1 Semester 2 Lengkap Semua Pelajaran


Demikianlah contoh Soal UTS / Ulangan Tengah Semester 2 Kelas 1 SD Mapel Matematika (KTSP). Semoga Bermanfaat.

Soal UTS Bahasa Indonesia Kelas 1 Semester 2 / Genap ~ KTSP


Pada kesempatan kali ini akan kami bagikan contoh Soal UTS / Ulangan Tengah Semester 2 (Genap) Kelas 1 SD Mapel Bahasa Indonesia ( KTSP )

Silakan klik link di bawah ini untuk mendownload soal :
Soal UTS Bahasa Indonesia Kelas 1 SD Semester 2 (Genap)  - KTSP 


Soal terkait :

Soal UTS KTSP Kelas 1 Semester 2 Lengkap Semua Pelajaran

 
Demikianlah contoh Soal UTS / Ulangan Tengah Semester 2 Kelas 1 SD Mapel Bahasa Indonesia (KTSP). Semoga Bermanfaat.

Segitiga-Segitiga Yang Kongruen

Jika pada materi sebelumnya Rumus Matematika Dasar menjelaskan materi mengenai Segitiga-Segitiga Yang Sebangun maka untuk kali ini materi tersebut akan dilanjutkan dengan membahas materi seputar Segitiga-Segitiga Yang Kongruen. Di dalam pembahasan materi pada kesempatan ini kita akan bersama-sama mempelajari tentang pengertian, sifat, serta syarat-syarat dari segitiga-segitiga yang kongruen. So, simak dengan baik ulasan materi di bawah ini, ya!


Pengertian Segitiga yang Kongruen

Coba kalian amati dengan baik gambar berikut ini:

Segitiga-Segitiga Yang Kongruen

Pada gambar tersebut terlihat susunan dari banyak segitiga yang saling berhimpitan. Apabila kita melakukan pergeseran ataupun pemutaran pada salah satu segitiga yang ada di dalam gambar tersebut maka segitiga tersebut akan menempati posisi segitiga yang lain dengan tepat. Keadaan tersebut menunjukkan bahwa segitiga yang satu dengan segitiga yang lain memiliki bentuk yang sama (sebangun) dan memiliki ukuran yang sama. Nah, segitiga-segitiga yang memiliki bentuk dan ukuran yang sama tersebutlah yang dapat kita sebut sebagai segitiga-segitiga yang kongruen (sama dan sebangun)


Sifat-sifat Dua Segitiga yang Kongruen

Untuk bisa memahami sifat-sifat dari dua segitiga yang kongruen kalian harus memperhatikan gambar berikut ini:

Segitiga-Segitiga Yang Kongruen

Karena segitiga-segitiga yang kongruen memiliki bentuk dan ukuran yang sama, maka masing-masing segitiga tersebut apabila diimpitkan akan saling menutupi dengan tepat satu sama lainnya.

Gambar di atas menunjukkan bahwa segitiga PQT dan segitiga QRS kongruen. Perhatikanlah panjang sisi-sisinya. Terlihat bahwa PQ = QT, QT = RS, dan QS = PT sehingga sisi-sisi yang bersesuaian dari kedua segitiga tersebut sama panjang.

Selanjutnya, perhatikanlah besar sudut dari kedua segitiga tersebut. Tampak terlihat bahwa sudut TPQ = sudut SQR, sudut PQT = QRS, sudut PTQ = sudut QSR sehingga sudut-sudut yang ada pada kedua segitiga tersebut sama besarnya.

Dari uraian tersebut kita dapat menyimpulkan bahwa dua buah segitiga dapat dikatakan kongruen apabila memenuhi sifat-sifat berikut ini:

1. Sisi-sisi yang bersesuaian sama panjang.
2. Sudut-sudut yang bersesuaian sama besar.

Syarat Dua Segitiga Kongruen

Dua segitiga dapat dikatakan kongruen apabila memenuhi salah satu dari tiga syarat yang ada di bawah ini:

A. Ketiga pasang sisi yang bersesuaian sama panjang (sisi, sisi, sisi)
Dua segitiga di bawah ini, yaitu ABC dan DEF memiliki panjang sisi yang sama.

Segitiga-Segitiga Yang Kongruen

AB = DE maka AB/DE = 1
BC = EF maka BC/EF = 1
AC = DF maka AC/DF = 1

Sehingga diperoleh AB/DE = BC/EF = AC/DF = 1

Perbandingan nilai yang sesuai untuk tiap-tiap sisi yang bersesuaian menunjukkan bahwa kedua segitiga tersebut sebangun. Karena sebangun, maka sudut-sudut yang dihasilkan pun akan menjadi sama besar, yaitu:

Sudut A = sudut D, sudut B = sudut E, sudut C = sudut F

Karena sisi-sisi yang bersesuaian sama panjang dan sudut-sudut yang bersesuaian sama besar maka dapat disimpulkan bahwa ABC dan DEF kongruen.


B. Dua sisi yang bersesuaian sama panjang dan sudut yang dibentuk oleh kedua sisi tersebut sama besar (sisi, sudut, sisi)
Segitiga-Segitiga Yang Kongruen

Pada gambar di atas diketahui bahwa AB = DE, AC = DF, dan sudut CAB = sudut EDF. Lalu, apakah kedua segitiga tersebut kongruen? Jika dua segitiga tersebut diimpitkan akan tepat berimpitan, sehingga diperoleh:

AB/DE = BC/EF = AC/DF = 1

Hal ini berarti segitiga ABC dan segitiga DEF sebangun sehingga diperoleh:

Sudut A = sudut D, sudut B = sudut E, sudut C = sudut F

Karena sisi-sisi yang bersesuaian sama panjang, maka dapat kita simpulkan bahwa ABC dan DEF tersebut kongruen.


C. Dua sudut yang bersesuaian sama besar dan sisi yang menghubungkan kedua titik sudut itu sama panjang (sudut, sisi, sudut)
Segitiga-Segitiga Yang Kongruen

Pada gambar di atas segitiga ABC dan DEF memiliki sepasang sisi bersesuaian yang sama panjang dan dua sudut bersesuaian yang sama besar, yaitu AB = DE, sudut A = sudut D, dan sudut B = sudut E. Karena sudut A = sudut D, dan sudut B = sudut E maka sudut C = sudut F. Jadi ABC dan DEF bersifat sebangun dan memiliki perbandingan yang senilai, yaitu:

AB/DE = BC/EF = AC/DF

Karena AD/BE = 1 maka BC/EF = AC/DF = 1

AC = DF dan BC = EF dengan demikian sudah bisa dipastikan bahwa kedua segitiga tersebut kongruen.


Demikianlah penjelasan yang cukup panjang mengenai Segitiga-Segitiga Yang Kongruen. Semoga tulisan ini dapat membantu kalian dalam memahami pengertian, sifat, serta syarat-syarat dari segitiga-segitiga yang kongruen.

Source: Salamah. U. 2012. Berlogika Dengan Matematika 3. Solo : Platinum